Saber dónde buscar un objetivo oculto
Resumen
Learning where to look for a hidden target
Survival depends on successfully foraging for food, for which evolution has selected diverse behaviors in different species. Humans forage not only for food, but also for information. We decide where to look over 170,000 times per day, approximately three times per wakeful second. The frequency of these saccadic eye movements belies the complexity underlying each individual choice. Experience factors into the choice of where to look and can be invoked to rapidly redirect gaze in a context and task-appropriate manner. However, remarkably little is known about how individuals learn to direct their gaze given the current context and task. We designed a task in which participants search a novel scene for a target whose location was drawn stochastically on each trial from a fixed prior distribution. The target was invisible on a blank screen, and the participants were rewarded when they fixated the hidden target location. In just a few trials, participants rapidly found the hidden targets by looking near previously rewarded locations and avoiding previously unrewarded locations. Learning trajectories were well characterized by a simple reinforcement-learning (RL) model that maintained and continually updated a reward map of locations. The RL model made further predictions concerning sensitivity to recent experience that were confirmed by the data. The asymptotic performance of both the participants and the RL model approached optimal performance characterized by an ideal-observer theory. These two complementary levels of explanation show how experience in a novel environment drives visual search in humans and may extend to other forms of search such as animal foraging.
Key words: Ideal observer, oculomotor, reinforcement learning, saccades.
Texto completo:
PDFReferencias
Açyk, A., Sarwary, A., Schultze-Kraft, R., Onat, S. y König, P. (2010), “Developmental changes in natural viewing behavior: Bottom-up and top-down differences between children, young adults and older adults”, Frontiers in Psychology 1: 207.
Adams, G. K., Watson, K. K., Pearson, J. y Platt, M. L. (2012) “Neuroethology of decision-making”, Current Opinion in Neurobiology 22(6): 982–989.
Araujo, C., Kowler, E. y Pavel, M. (2001), “Eye movements during visual search: The costs of choosing the optimal path”, Vision Research 41(25–26): 3613–3625.
Baum, W. M. (1982), “Choice, changeover, and travel”, Journal of the Experimental Analysis of Behavior 38(1): 35–49.
Bénichou, O., Coppey, M., Moreau, M., Suet, P.-H. y Voituriez, R. (2005), “Optimal search strategies for hidden targets”, Physical Review Letters 94(19): 198101–198104.
Bisley, J. W. y Goldberg, M. E. (2010), “Attention, intention, and priority in the parietal lobe”, Annual Review of Neuroscience 33: 1–21.
Bradshaw, C. M., Szabadi, E. y Bevan, P. (1976), “Behavior of humans in variable-interval schedules of reinforcement”, Journal of the Experimental Analysis of Behavior 26(2): 135–141.
Brainard, D. H. (1997), “The Psychophysics Toolbox”, Spatial Vision 10(4): 433– 436.
Buswell, G. T. (1935), How People Look at Pictures: A Study of the Psychology of Perception in Art. Chicago: University of Chicago Press.
Carello, C. D. y Krauzlis, R. J. (2004), “Manipulating intent: Evidence for a causal role of the superior colliculus in target selection”, Neuron 43(4): 575–583.
Castelhano, M. S. y Heaven, C. (2010), “The relative contribution of scene context and target features to visual search in scenes”, Attention, Perception, & Psychophysics 72(5): 1283–1297.
Castelhano, M. S. y Heaven, C. (2011), “Scene context influences without scene gist: Eye movements guided by spatial associations in visual search”, Psychonomic Bulletin & Review 18(5): 890–896.
Castelhano, M. S., Mack, M. L. y Henderson, J. M. (2009), “Viewing task influences eye movement control during active scene perception”, Journal of Vision 9(3): 1–15.
Charnov, E. L. (1976), “Optimal foraging, the marginal value theorem”, Theoretical Population Biology 9(2): 129–136.
Chun, M. M. y Jiang, Y. (1998), “Contextual cueing: Implicit learning and memory of visual context guides spatial attention”, Cognitive Psychology 36(1): 28–71.
Fecteau, J. H. y Munoz, D. P. (2003), “Exploring the consequences of the previous trial”, Nature Reviews Neuroscience 4(6): 435–443.
Fecteau, J. H. y Munoz, D. P. (2006), “Salience, relevance, and firing: A priority map for target selection”, Trends in Cognitive Sciences 10(8): 382–390.
Gallistel, C. R., King, A. P., Gottlieb, D., Balci, F., Papachristos, E. B., Szalecki, M. y Carbone, K. S. (2007), “Is matching innate?” Journal of the Experimental Analysis of Behavior 87(2):161–199.
Geng, J. J. y Behrmann, M. (2005), “Spatial probability as an attentional cue in visual search”, Perception & Psychophysics 67(7): 1252–1268.
Gilchrist, I. D., North, A. y Hood, B. (2001), “Is visual search really like foraging?”, Perception 30(12): 1459–1464.
Greene, M. R., Liu, T. y Wolfe, J. M. (2012), “Reconsidering Yarbus: A failure to predict observers’ task from eye movement patterns”, Vision Research 62: 1–8.
Greggers, U. y Mauelshagen, J. (1997), “Matching behavior of honeybees in a multiple-choice situation: The differential effect of environmental stimuli on the choice process”, Animal Learning & Behavior 25(4): 458–472.
Hayden, B. Y., Pearson, J. M. y Platt, M. L. (2011), “Neuronal basis of sequential foraging decisions in a patchy environment”, Nature Neuroscience 14(7): 933– 939.
Hayhoe, M. y Ballard, D. (2005). “Eye movements in natural behavior”, Trends in Cognitive Sciences 9(4): 188–194.
Herrnstein, R. J. (1961), “Relative and absolute strength of response as a function of frequency of reinforcement”, Journal of the Experimental Analysis of Behavior 4: 267–272.
Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghton, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., Wearmouth, V. J., Southall, E. J. y Sims, D. W. (2010), “Environmental context explains Lévy and Brownian movement patterns of marine predators”, Nature 465 (7301): 1066–1069.
Itti, L. y Koch, C. (2000), “A saliency-based search mechanism for overt and covert shifts of visual attention”, Vision Research 40(10-12): 1489–1506.
James, A,. Plank, M. J. y Edwards, A. M. (2011), “Assessing Lévy walks as models of animal foraging”, Journal of the Royal Society Interface 8(62): 1233–1247.
Klein, J. T, Deaner, R. O. y Platt, M. L. (2008), “Neural correlates of social target value in macaque parietal cortex”, Current Biology 18(6): 419–424.
Lau, B. y Glimcher, P. W. (2005), “Dynamic response-by-response models of matching behavior in rhesus monkeys”, Journal of the Experimental Analysis of Behavior 84(3): 555–579.
Lee, D., Seo, H. y Jung, M. W. (2012), “Neural basis of reinforcement learning and decision making”, Annual Review of Neurosciences 35: 287–308.
Mark, T. A. y Gallistel, C. R. (1994), “Kinetics of matching”, Journal of Experimental Psychology: Animal Behavior Processes 20(1): 79–95.
Milstein, D. M. y Dorris, M. C. (2007), “The influence of expected value on saccadic preparation”, Journal of Neuroscience 27(18): 4810–4818.
Mirpour, K., Arcizet, F., Ong, W. S. y Bisley, J. W. (2009), “Been there, seen that: A neural mechanism for performing efficient visual search”, Journal of Neurophysiology 102(6): 3481–3491.
Mirpour, K., Ong, W. S. y Bisley, J. W. (2010), “Microstimulation of posterior parietal cortex biases the selection of eye movement goals during search”, Journal of Neurophysiology 104(6): 3021–3028.
Montague, P. R. y Sejnowski, T. J. (1994), “The predictive brain: Temporal coincidence and temporal order in synaptic learning mechanisms”, Learning & Memory 1(1): 1–33.
Nakahara, H. y Hikosaka, O. (2012), “Learning to represent reward structure: A key to adapting to complex environments”, Neuroscience Research 74(3-4): 177–183.
Neider, M. B. y Zelinsky, G. J. (2006), “Scene context guides eye movements during visual search”, Vision Research 46(5): 614–621.
Niv, Y., Joel, D., Meilijson, I. y Ruppin, E. (2002), “Evolution of reinforcement learning in uncertain environments: A simple explanation for complex foraging behaviors”, Adaptive Behavior 10(1): 5–24.
Oliva, A. y Torralba, A. (2006), “Building the gist of a scene: The role of global image features in recognition”, Progress in Brain Research 155: 23–36.
Parkhurst, D. J. y Niebur, E. (2003), “Scene content selected by active vision”, Spatial Vision 16(2): 125–154.
Platt, M. L. y Glimcher, P. W. (1999), “Neural correlates of decision variables in parietal cortex”, Nature 400(6741): 233–238.
Potter, M. C. (1975), “Meaning in visual search”, Science 187(4180): 965–966.
Rayner, K. (1998), “Eye movements in reading and information processing: 20 years of research”, Psychological Bulletin 124(3): 372–422.
Rayner, K., Castelhano, M. S. y Yang, J. (2009), “Eye movements when looking at unusual/weird scenes: Are there cultural differences?”, Journal of Experimental Psychology: Learning, Memory and Cognition 35(1): 254–259.
Reinagel, P. y Zador, A. M. (1999), “Natural scene statistics at the centre of gaze”, Network 10(4): 341–350.
Schultz, W., Dayan, P. y Montague, P. R. (1997), “A neural substrate of prediction and reward”, Science 275(5306): 1593–1599.
Schütz, A. C., Trommershäuser, J. y Gegenfurtner, K. R. (2012), “Dynamic integration of information about salience and value for saccadic eye movements”, Proceedings of the National Academy of Sciences USA 109(19): 7547–7552.
Shadmehr, R. (2010), “Control of movements and temporal discounting of reward”, Current Opinion in Neurobiology 20(6): 726–730.
Shadmehr, R., Orban de Xivry, J. J., Xu-Wilson, M. y Shih, T. Y. (2010), “Temporal discounting of reward and the cost of time in motor control”, Journal of Neuroscience 30(31): 10507–10516.
Smith, A. D., Gilchrist, I. D. y Hood, B. M. (2005), “Children’s search behaviour in large-scale space: Developmental components of exploration”, Perception 34(10): 1221–1229.
Snider, J. (2011), “Optimal random search for a single hidden target”, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 83(1 Pt 1): 011105.
Stritzke, M. y Trommershäuser, J. (2007), “Eye movements during rapid pointing under risk”, Vision Research 47(15): 2000–2009.
Sutton, R. S. (1988), “Learning to predict by the method of temporal differences”, Machine Learning 3(1): 9–44.
Sutton, R. S. y Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.
Tatler, B. W. y Vincent, B. T. (2009), “The prominence of behavioural biases in eye guidance”, Vision and Cognition 17(6–7): 1029–1054.
Tatler, B. W., Baddeley, R. J. y Vincent, B. T. (2006), “The long and the short of it: Spatial statistics at fixation vary with saccade amplitude and task”, Vision Research 46(12): 1857–1862.
Torralba, A., Oliva, A., Castelhano, M. S. y Henderson, J. M. (2006), “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search”, Psychological Review 113(4): 766–786.
Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P. y Stanley, H. E. (1999), “Optimizing the success of random searches”, Nature 401 (6756): 911–914.
Võ, M. L. y Henderson, J. M. (2010), “The time course of initial scene processing for eye movement guidance in natural scene search”, Journal of Vision 10(3): 11–13.
Wilder, M. H., Mozer, M. C. y Wickens, C. D. (2011), “An integrative, experience-based theory of attentional control”, Journal of Visions 11(2), 10.1167/11.2.8.
Wolfe, J. M., Võ, M. L., Evans, K. K. y Greene, M. R. (2011), “Visual search in scenes involves selective and nonselective pathways”, Trends in Cognitive Sciences 15(2): 77–84.
Xu-Wilson, M., Zee, D. S. y Shadmehr, R. (2009), “The intrinsic value of visual information affects saccade velocities”, Experimental Brain Research 196(4): 475–481.
Yarbus, A. L. (1967), Eye Movements and Vision. Nueva York: Plenum.
Yasuda, M., Yamamoto, S. y Hikosaka, O. (2012), “Robust representation of stable object values in the oculomotor Basal Ganglia”, Journal of Neuroscience 32(47): 16917–16932.
Yu, A. J. y Cohen, J. D. (2008), “Sequential effects: Superstition or rational behavior?, en D. Koller, D. Schuurmans, Y. Bengio y L. Bottou (eds.), Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, Vol. 21, pp 1873–1880.
Enlaces refback
- No hay ningún enlace refback.
Revista semestral editada por el Centro de Estudios Filosóficos, Políticos
y Sociales Vicente Lombardo Toledano de la Secretaría de Educación Pública,
la Universidad Autónoma Metropolitana-Iztapalapa y Edicions UIB de la Universitat de les Illes Balears.
Lombardo Toledano 51, Col. Ex-Hda. Guadalupe Chimalistac,
Del. Alvaro Obregón, C.P. 01050, México, D.F.
Tels. (5255) 5661-4679 y 5661-4987
Fax: (5255) 5661-1787