DEFINITIVAMENTE NO ESTABA AHÍ

LA AUSENCIA DE LA TEORÍA
DE LA SELECCIÓN NATURAL EN
SOBRE LA TENDENCIA
DE LAS VARIEDADES A APARTARSE
INDEFINIDAMENTE DEL TIPO ORIGINAL
DE ALFRED RUSSEL WALLACE

GUSTAVO CAPONI

ABSTRACT. Far from having diminished Darwin's priority in the formulation of *natural selection theory*, Alfred Russel Wallace's "On the tendency of varieties to depart indefinitely from the original type" supposes a way of reasoning that, besides being incompatible with that theory, does not carry us to Darwin's *principle of divergence*. The fundamental limitation of Wallace's argument was to consider that the formation of varieties did not deserve further explanations. His theory was just an explanation for the substitution of an original form by a derived variety, not an explanation of the proliferation of lineages.

KEY WORDS. Darwin, Wallace, Gayon, natural selection, principle of divergence, varieties, lineage.

PRESENTACIÓN

La historia es muy conocida: En 1842 y 1844, Darwin ([1842]1996 & [1844]1996) había llegado a redactar dos versiones bastante aproximadas de su teoría *definitiva*, pero a ambas les faltaba una pieza fundamental: la identificación de la razón por la cual el mecanismo de selección natural producía diversificación, y no meramente modificación adaptativa, de las formas biológicas (Darwin, 1892, p. 43). Darwin sólo pudo resolver esa dificultad en los años posteriores a 1852 (cf. Glick & Kohn 1996, p. 128), y fue animado por esa comprensión de lo que él llamó *principio de divergencia* (Kohn 2009, p. 87) que, en 1856, atendió a las recomendaciones de Joseph Hooker y Charles Lyell, e inició la redacción de un gran libro titulado *La selección natural* (Huxley & Kettlewell 1985, p. 125). La redacción de esta obra, sin embargo, se vio definitivamente interrumpida a inicios de junio de 1858 cuando Darwin recibió aquella célebre y *sorprendente* carta que

Departamento de Filosofia, Universidade Federal de Santa Catarina, Brasil. / caponi@cfh.ufsc.br

Alfred Russel Wallace le enviaba desde el archipiélago malayo (Darwin: 1859, p. 2 y 1892, p. 43).

Éste era un joven naturalista con el que Darwin ([1857] 1996) ya tenía contacto epistolar (Bizzo 2002, p. 173; Ghiselin 2006, p. x), y cuyo artículo "Sobre la ley que ha regulado la introducción de nuevas especies" (Wallace [1855]1871) no le era desconocido (cf. Porter & Graham 1993, p. 86). Pero, he ahí la gran sorpresa, en esa carta él estaba sometiendo a la consideración de Darwin una breve pero sólida exposición de, *prácticamente*, la misma teoría en la que este último trabajaba desde 1844 (Canguilhem 1983, pp. 104-105; Glick & Kohn 1996, pp. 336-337).

Esto, como era de esperarse, puso a Darwin ante una situación muy difícil de resolver (cf. Darwin [1858] 1996a, p. 189). Su prioridad en la formulación de la *teoría de la selección natural* estaba amenazada por un trabajo, aún inédito, que un colega le estaba confiando, como él también lo había hecho con Hooker en 1847 y Asa Gray en 1857, enviándoles sendos resúmenes de su teoría (Porter & Graham 1993, p. 87). Así, abrumado por esa imprevista consecuencia de su *exceso de celo* en la preparación de la obra en la que daría a conocer sus tesis, que Darwin apeló a los consejos, y al auxilio, de Hooker y Lyell (Howard 1982, p. 6; Harris 1985, p. 242), y fueron ellos los que le recomendaron, y programaron, una presentación conjunta del ensayo de Wallace y de los esbozos de la teoría que él ya había enviado a Hooker y a Gray (Darwin [1858] 1977).

Dicha presentación, con la explícita anuencia de todos los implicados, fue realizada en una sesión de la *Linnean Society* ocurrida el primero de julio de 1858 (Darwin 1892, p. 43; Porter & Graham 1993, p. 87). Allí, ni Darwin, ni Wallace, que se encontraba demasiado lejos, estuvieron presentes (Lewens 2007, p. 33), y fueron Lyell y Hooker los responsables de la lectura de un trabajo armado con las contribuciones de ambos naturalistas que se dio en llamar "Sobre la tendencia de las especies a formar variedades; y sobre la perpetuación de las variedades y especies por medios naturales de selección" (Darwin & Wallace [1858] 1977). De ese modo, y sin opacar la originalidad y el mérito de Wallace, Darwin habría conseguido salvar con alguna dignidad sus pretensiones de prioridad (Peckham 1959, p. 12).

Con todo, si prestamos atención a la comparación entre las tesis de ambos naturalistas que Jean Gayon (1992) desarrolla en el primer capítulo de *Darwin et l'après Darwin*, veremos que hay muy buenas razones para dudar de que la prioridad de Darwin haya estado realmente amenazada. Confirmando, tal vez sin saberlo, lo que Etienne Gilson (1976, p. 128) había sugerido a este respecto, Jean Gayon (1992, pp. 32-33) muestra que "no hay en el ensayo de Wallace un equivalente riguroso de la hipótesis darwiniana de la selección natural". Aquí intentaré refrendar esa conclusión mostrando que el argumento que Wallace ([1858] 1977) desarrolla en su *paper*

de 1858 supone un modo de razonar incompatible con la *teoría darwiniana* de la selección natural. Además de eso, también intentaré mostrar que, por su propia lógica, la argumentación de Wallace es incapaz de llevarnos hasta ese *principio de divergencia* que, según se ha llegado a decir, él había entrevisto en su ya mencionado trabajo, 1855, "Sobre la ley que ha regulado la introducción de nuevas especies", y del cual Darwin se habría apropiado sin reconocer su deuda (cf. Gayon 1992, p. 22 y p. 26).

SELECCIÓN

En ese artículo, Wallace ([1855]1871, p. 25) había sostenido que "toda especie ha llegado a existir coincidiendo, tanto espacial como temporalmente, con una especie preexistente con la que estaba estrechamente vinculada"; y aunque esa formulación no fuese en sí misma incompatible con una teoría de las *creaciones sucesivas*, en varios pasajes del texto se pone en evidencia un entendimiento transformista de ese llegar a existir (cf. Wallace [1855] 1871: p. 2; p. 3; p. 10 y p. 24) que era coherente con las convicciones que, a ese respecto, Wallace ya abrigaba desde su lectura de Los vestigios de la historia natural de la creación, de Robert Chambers, en 1845 (Limoges 1976, p. 95; Bowler 1989, p. 185; Glick & Kohn 1996, p. 335). Sin embargo, aun cuando ese enunciado general sobre la aparición de nuevas especies fuese coherente con la evidencia biogeográfica (Wallace [1855]1871, p. 9), con el registro paleontológico (Wallace [1855] 1871, p. 13), con los datos de la anatomía comparada (Wallace, [1855] 1871, p. 23) y, además, prometiese echar luz sobre la taxonomía (Wallace [1855] 1871, p. 6), no había en ese escrito ninguna referencia al mecanismo o proceso que explicaría dicha regularidad (Limoges 1976, p. 98); y es a remediar esa falta que Wallace consagraría aquel manuscrito que Darwin recibió en 1858.

Este último trabajo se inicia con la referencia a uno de los argumentos que más usualmente eran esgrimidos en contra de las hipótesis transformistas: la tendencia a volver al tipo originario salvaje que las variedades de las diversas especies domésticas mostrarían cuando fueran devueltas a la vida silvestre (cf. Gayon, 1992, p. 35). François Desiré Roulin (1835, p. 352), por ejemplo, había creído observar esa tendencia en el caso de algunos linajes de animales domésticos europeos que se habían vuelto cimarrones en América, y es digno de mencionar que, todavía en 1864, Pierre Flourens (1864, p. 63) apuntaba esas mismas *observaciones* como evidencias contrarias a Darwin. Lyell (1832, p. 36 y ss), además, ya había citado esa tendencia entre sus argumentos antitransformistas del segundo volumen de los *Principios de geología*.

Wallace, en lugar de discutir la existencia de dicha tendencia, se limita a apuntar que esa supuesta *reversión al tipo originario* registrada en las variedades domésticas, no se cumplía en el caso de las variedades de

especies salvajes. En la naturaleza, decía él, actuaba un principio general que hacía que "muchas variedades sobreviviesen a la especie primitiva y diesen lugar a sucesivas variaciones progresivamente divergentes del tipo original"; y agregaba que era ese mismo principio el que explicaba la reversión al tipo originario salvaje que se daba en las variedades domésticas devueltas a la vida salvaje (Wallace [1858] 1977, p. 11).

Como Darwin, Wallace ([1858] 1977, p. 11) también considera que "la vida de los animales salvajes es una lucha por la existencia" (Gayon 1992, p. 25), y apunta que esa condición, además de determinar la pervivencia de los individuos y de las especies, también explica el hecho de que el número total de individuos de algunas de éstas sea mucho mayor que el número total de individuos de otras muy semejantes. La disponibilidad de alimentos y la aptitud para conseguirlo, así como la capacidad para protegerse de los enemigos y de las intemperies, y no la tasa de fecundidad, son para él la clave de esas diferencias de densidad poblacional que se registran entre las especies de un mismo género (Wallace [1858]1977, p. 12). Por eso, nos dice Wallace ([1858] 1977, p. 13), del mismo modo en que dentro de una misma especie, los individuos más débiles, que para él son "los muy jóvenes, los demasiado viejos, y los enfermos", tienden a perecer, mientras "los más perfectos en salud y vigor" tienden a sobrevivir por estar mejor "preparados para obtener comida regularmente y evitar sus numerosos enemigos"; dentro de las especies de un mismo grupo habrá algunas que, por su *organización superior*, estarán más capacitadas que otras para perpetuarse v sostener su crecimiento poblacional (Wallace [1858] 1977, p. 14).

Wallace ([1858] 1977, p. 11) sabe, por otro lado, que la capacidad de crecimiento poblacional de cada especie, y finalmente de cada variedad dentro de la especie, depende de las características de los individuos que componen al linaje. Son éstos los que deben comer y protegerse, y es su constitución individual la que determinará el mayor o menor éxito relativo global de cada especie o de cada variedad (Wallace [1858] 1977, p. 13). Pero aquí es necesario prestar atención a un dato muy significativo: sin aludir a diferencias individuales que vayan más allá de las determinadas por la edad o por el estado de salud de cada individuo, Wallace ([1858], 1977, p. 14) está pensando en una *conformación típica* de cada linaje que, incidiendo de un modo más o menos uniforme en la suerte de todos y cada uno de los individuos, resultará en la mayor o menor prosperidad del linaje como un todo (Gayon, 1992, p. 32).

Por eso, concluye, si la constitución de los individuos se altera de una forma tal que obstaculice esa procura de alimento y de protección, el resultado de esa modificación "deberá ser necesariamente una disminución en la población de la especie modificada" (Wallace [1858] 1977, p. 14). Esa afirmación, me parece, constituye un indicio claro de que Wallace no está pensando en los términos que exigiría la *teoría de la selección natural*.

Es que, si aceptamos esta teoría, incluso en la formulación improvisada y algo torpe que Darwin le daba en los textos presentados junto al *paper* de Wallace, resulta bastante difícil entender cómo es que esos individuos mal dotados podrían llegar a generalizarse dentro de la especie al punto de disminuir o amenazar su viabilidad global.

En el primero de esos dos escritos, Darwin ([1858] 1977a, p. 6) afirmaba que cualquier individuo cuyas estructuras o comportamientos hiciesen mejorar ligeramente su desempeño en la *lucha por la existencia* "tendría mayores probabilidades de supervivencia, y aquellos descendientes suyos que heredasen esa variación [*variation*], aunque ella fuese muy pequeña, también tendrían una probabilidad mayor". Pero, según podemos inferirlo fácilmente de la lectura de sus dos contribuciones, lo que vale para las variaciones ligeramente benéficas, también vale para el caso de aquellas que sean ligeramente perniciosas: sus portadores tendrían menos probabilidades de sobrevivir y su descendencia, en medida ya más escasa que la de aquellos que no presentan esa variación perniciosa, padecería también de esas mismas desventajas (cf. Darwin [1858] 1977a, pp. 6-7); y por eso la proporción de los portadores de esa característica difícilmente podría incrementarse al punto de comprometer, como Wallace pensaba, la suerte de toda la especie.

Lo que ocurre, en realidad, es que Wallace no está pensando en la evolución de una especie o de una población como el resultado de la suerte diversa que sus miembros individuales pueden tener en la lucha por la existencia. Por lo menos en el trabajo que aquí estamos analizando, él sólo está pensando en términos de la suerte que pueden tener las diferentes especies de un género y, sobre todo, en términos de las diferentes variedades de cada especie (Bowler 1989, p. 186; Gayon 1992, p. 27). Wallace no se pregunta, por eso, por los procesos que habrían conducido a la constitución de esas variedades: para él, ellas se conforman independientemente del hecho de que sus características sean más o menos convenientes en la lucha por la existencia, y ésta sólo entra en consideración para explicar por qué dichas variedades generan poblaciones más o menos numerosas. Darwin, en cambio, sí contaba con una argumentación para explicar cómo la variedad se generaba, y esa explicación era la selección natural (Gayon 1992, p. 31). Así, ya en el segundo de sus trabajos presentados en 1858, él podía decir que:

Considerando la infinita variedad de métodos que los seres vivos siguen para obtener comida luchando con otros organismos, para escapar del peligro en las distintas etapas de su vida, para tener sus huevos y semillas diseminadas, etc., etc., yo no puedo dudar que, durante millones de generaciones, individuos de una especie ocasionalmente nacerán con alguna pequeña variación [variation], provechosa para alguna parte de su economía. Esos individuos tendrán

una mayor probabilidad de sobrevivir, y de propagar su nueva y ligeramente diferente estructura; y, en la medida en que ello sea conveniente, dicha modificación podrá ser lentamente incrementada por la acción acumulativa de la selección natural. La variedad [variety] así formada podrá, o bien coexistir con la forma parental, o, más comúnmente, exterminarla. (Darwin [1858] 1977b, p. 9).

Además, en lo que atañe a este punto, también es importante resaltar que lo que ambos naturalistas entendían por variedad [variety] no era la simple forma variante que surge de alguna azarosa variación [variation] hereditaria (cf. Gayon, 1992, p. 28). Para Wallace, como para Darwin (1859, p. 44) en Sobre el origen de las especies, las variedades son linajes particulares y diferenciados que se desprenden de una especie parental [parent species] (Wallace [1858] 1977, p. 11). Pero, en su óptica, son ellas las que, en función de las peculiaridades morfológicas comunes a la mayor parte de los individuos que las integran, pueden tener mayor o menor capacidad de crecimiento poblacional que la forma originaria, y esto constituye una clara diferencia entre su perspectiva y la de Darwin (Gayon 1992, p. 30).

Para Wallace, las diferencias morfológicas hereditarias entre los individuos de un mismo linaje, las *variations* de Darwin, no parecen, en este sentido, revestir mayor importancia. Exceptuando aquellas diferencias que pueden existir entre los organismos sanos y enfermos, y desconsiderando las desventajas de los demasiado jóvenes o los demasiado viejos, para él, todos los individuos de una misma variedad parecen tener un desempeño más o menos semejante en la *lucha por la existencia* (Wallace [1858] 1977, p. 13); y es sólo al comparar las variedades de una misma especie que comienzan a surgir las diferencias significativas. Wallace, lo dice claramente Jean Gayon (1992, p. 60), "interpreta la transformación de las especies como la consecuencia de una competición entre variedades (o 'razas'): las variedades más aventajadas crecen numéricamente en detrimento de las otras y las eliminan". Sus posiciones, en efecto, parecen mucho más próximas de lo que hoy llamaríamos selección de grupos (Gayon, 1992, p. 33).

"Todas las variedades —sostiene Wallace ([1858] 1977, p. 14)— caen en dos clases: las que bajo las mismas condiciones nunca alcanzarían la población de la especie parental y aquellas que con el tiempo obtienen y mantienen una superioridad numérica"; y esto nos permite imaginar un escenario en donde, coexistiendo en un territorio una especie parental y dos variedades derivadas de ésta, una más débil y menos numerosa que su cepa originaria, y otra que, por el contrario, fuese más fuerte y numerosa que ella, el linaje derivado más fuerte acabe sustituyendo a los otros dos. Es que, en una situación semejante, un cambio del ambiente que haga "la existencia más difícil para la especie en cuestión, y pusiese a prueba su capacidad de evitar el completo exterminio", podría hacer no sólo que la

variedad menos numerosa y más débil se extinga, sino que también podría finalmente conducir a la extinción de la forma originaria, y así "la variedad superior se quedaría sola" (Wallace [1858] 1977, pp. 14-15).

Claro, si la penuria continuase y se intensificase, la variedad más fuerte y numerosa también podría acabar del mismo modo, pero si por ventura eso no ocurre, y la penuria finalmente pasa, ella "crecería rápidamente en número y ocuparía el lugar de la especie y de la variedad extintas". En un caso así, dice entonces Wallace ([1858], 1977, p. 15), "la variedad remplazaría a la especie, de la cual ella sería una forma más perfectamente desarrollada y más altamente organizada", y sería esa misma superioridad organizacional la que impediría el retorno al predominio de la forma original, aun cuando esta última, pese a su menor aptitud global, resurgiese como resultado de esa supuesta tendencia al retorno del tipo originario. Es que éste, bajo las nuevas condiciones imperantes, nunca podría ser un competidor serio de la variedad que ya se había mostrado mejor adaptada, y por eso, aun dando por cierta la existencia de esa tendencia a reproducir el tipo original de la especie, se puede inferir que, si esas condiciones no cambian, la variedad mejor dotada "debería continuar siendo preponderante en números". Pudiéndose suponer, además, que "bajo condiciones físicas adversas, de nuevo sólo ella sobreviviría". Este modo de razonar, dice además Wallace ([1858], 1977, p. 18), permite:

[...] explicar el equilibrio tan a menudo observado entre en la naturaleza una deficiencia en un grupo de órganos siendo siempre compensada por un mayor desarrollo en otros órganos, alas poderosas acompañando patas débiles, o gran velocidad compensando la ausencia de armas defensivas, porque ha sido mostrado que todas las variedades en las que ocurra una deficiencia no compensada no podría continuar su existencia. La acción de este principio es exactamente como el del regulador centrífugo de la máquina a vapor, que frena y corrige cualquier irregularidad prácticamente antes de que ella se haga evidente, y de ese modo, en el reino animal, ninguna deficiencia no compensada puede alcanzar una magnitud conspicua, porque ella se haría notar desde el primer momento, dificultando la existencia y tornando la extinción inmediata casi segura.

Es necesario insistir, con todo, en el hecho de que ese sistema de control actúa no sólo en un nivel distinto al control de la selección natural darwiniana, sobre las variedades y no sobre los individuos, sino que, además, su reacción es más tardía y su vigilancia menos constante que la darwiniana. Él deja que se produzcan variedades, linajes, desde el inicio menos adaptadas a las exigencias ambientales que la forma originaria, y sólo las elimina cuando las condiciones se tornan más duras de lo normal. De algún modo, Wallace está pensando en una lucha por la existencia menos exigente que la darwiniana y por eso el mecanismo 'selectivo' que él deriva

de ella es menos minucioso, más poroso, y más inconstante que el darwiniano. Por esa misma razón, el mecanismo regulador imaginado por Wallace tampoco podría tener el poder creativo de la selección natural darwiniana: sin llegar a ser el responsable de que surjan aquellas conformaciones que caracterizan a las variedades que resultan superiores a las originarias, él sólo elimina aquellas conformaciones que, cuando la situación se complica, acaban resultando demasiado contraproducentes, y es como resultado de esa eliminación que surge el espacio para aquellas conformaciones que resultaban más convenientes.

No es fortuito, y tampoco por una modestia excesiva o una patológica vocación de segundón, que Wallace (1871, p. 47) haya atribuido a Darwin eso que él llamaba principio de utilidad, es decir, la presunción, hoy diríamos adaptacionista, de que "ningún órgano especial, ninguna forma característica o marcada, ninguna peculiaridad en los instintos o en los hábitos, ninguna relación entre especies o grupo de especies puede existir sino es o no fue útil para los individuos o las razas que los poseen" (ver también: Wallace 1889, p. 188). Es que esa idea, según la cual, "cada detalle de estructura en cada criatura viviente puede ser vista, o como habiendo tenido algún uso especial para una forma ancestral, o como teniendo ahora un uso especial para los descendientes de esa forma" (Darwin 1859, p. 200) no se deduce tan claramente de ese sistema de control postulado por Wallace como sí lo hace de aquel concebido por Darwin. Este es, ciertamente, mucha más puntilloso y exigente que aquél, y eso nos lleva a pensar las estructuras orgánicas de dos modos ligera pero significativamente diferentes.

Lo cierto, de todos modos, es que aun con esa línea de razonamiento, originalmente menos adaptacionista que la de Darwin, Wallace ([1858] 1977, p. 17) estaba todavía en condiciones de explicar por qué en las variedades de especies domésticas que retornaban a la vida silvestre se verificaba esa tendencia a regresar a algo próximo del tipo originario salvaje. En esas condiciones, de la forma domesticada no dejaban de desprenderse variedades; el surgimiento de éstas, como vimos, es para Wallace un hecho indiscutido que, al parecer, tampoco merecía mayores explicaciones, y en la medida en que alguna de esas variedades fuese más o menos semejante al tipo originario salvaje, y por eso mejor dotada para enfrentar las duras condiciones de la vida silvestre, ella incrementaría sus efectivos hasta sobrepasar y eventualmente sustituir a la forma surgida en las plácidas condiciones propias de la domesticidad.

DIVERGENCIA

Cuando veas a otro ganar, / A estorbarlo no te metas: / Cada lechón en su teta: / Es el modo de mamar.

José Hernández [1879]: *La vuelta de Martín Fierro*. [Consejos del viejo Viscacha]

Es claro que, para Wallace, la victoria de la nueva variedad, tanto en el caso de la especie ya salvaje como en el caso de aquella que se desprende de una especie doméstica devenida cimarrona, está lejos de ser una conquista definitiva. Para él, es obvio, la variedad triunfante no queda exenta de la posibilidad de también tener que enfrentar el albur que condenó a su especie parental. Como ocurrió con esta última, ella también podrá dar lugar a otros linajes divergentes de los cuales será su especie parental, y entre esos linajes divergentes podrá haber uno más fuerte y numeroso que, en una de esas aciagas temporadas de penuria y escasez, acabe tomando su lugar para, un día, él ser igualmente destronado por sus sucesores. Así, dice Wallace ([1858] 1977, p. 15), se configura un patrón "de progresión y continua divergencia que se deduce de las leyes generales que regulan la existencia de los animales en el estado de naturaleza, y del indiscutido hecho de que las variedades frecuentemente ocurren".

Ahora, podría decir Wallace, quedaba claro por qué toda especie surge coincidiendo, geográfica y geológicamente, con una especie prexistente de su propio género: la especie nueva, en realidad, no es más que una variedad que desplazó a su especie parental (cf. Wallace [1858] 1977, p. 18). No obstante, aun cuando se considerase que su explicación de la sucesión, y del cambio, de forma es satisfactoria, sería mucho más difícil aceptar que Wallace haya dado con una explicación igualmente satisfactoria de cómo, por la mediación de ese mecanismo de sustituciones sucesivas, se pueden generar procesos de diversificación a partir de un conjunto menor de formas ancestrales como el que él mismo conjeturó que podría haber dado lugar a la fauna de Galápagos.

En la edición de 1845 de sus crónicas del viaje a bordo del *Beagle*, Darwin ([1845] 1902, p. 140) se había permitido confesar que, al considerar las diferencias de conformación existentes entre las diversas especies de pinzones de esas islas, "podría creerse que, en virtud de una pobreza original de pájaros en ese archipiélago, se había modificado una sola especie para llegar a fines diferentes"; en su ya citado artículo de 1855, Wallace ([1855]1871, p. 10) retomó esa idea conjeturando que esas islas habrían sido pobladas por especies llevadas hasta ahí por vientos y por corrientes marinas y que, después, esas especies pioneras habrían muerto y "sólo habrían quedado los prototipos modificados" (cf. Glick & Kohn 1996, p. 22).

No queda claro, sin embargo, cómo el mecanismo imaginado en 1858 podría explicar un proceso semejante. Dicho mecanismo, como dije, es un mecanismo de sustitución, y no de diversificación como sí lo era aquél que Darwin esbozó en el segundo segmento de su contribución a "Sobre la tendencia de las especies a formar variedades; y sobre la perpetuación de las variedades y especies por medios naturales de selección". Allí, después de enunciar claramente la idea de selección natural Darwin ([1858] 1977, pp. 9-10) decía que:

Otro principio, que puede ser llamado principio de divergencia, juega [...] una parte importante en el origen de las especies. El mismo lugar soportará más vida si ocupado por formas muy diversas. Vemos esto en las muchas formas genéricas que se dan en una yarda cuadrada de un terreno herboso, y en las plantas o insectos que encontramos en cualquier islote uniforme y que pertenecen casi invariablemente a tantos géneros o familias como especies ahí encontramos. Podemos comprender el significado de ese hecho en los animales superiores, cuyos hábitos entendemos. Sabemos que fue mostrado experimentalmente que una parcela de tierra produce una cosecha mayor si es sembrada con muchas especies y géneros de hierbas, y no con apenas dos o tres especies. Ahora bien, todo organismo, al propagarse tan rápidamente, puede decirse que hace todo lo posible para aumentar su número. Ocurrirá lo mismo con la descendencia de cualquier especie una vez diversificada en variedades o subespecies, o en verdaderas especies. De esto resulta [...] que la variada descendencia de cada especie procurará (solamente pocos conseguirán) apoderarse del mayor número posible de lugares diferentes en la economía de la naturaleza. Cada nueva variedad, o especie, una vez formada, generalmente tomará el lugar de sus ancestros menos aptos y así los exterminará. [...] Ese es el origen de la clasificación y de las afinidades de los seres orgánicos de todas las épocas; porque ellos parecen ramificarse y subramificarse como los miembros de un árbol a partir de un tronco común: los ramos más florecientes y divergentes que destruyen aquellos menos vigorosos —y los ramos muertos o perdidos que representan a los géneros y a las familias extintas.

Darwin, ciertamente, no es ahí lo suficientemente claro en la explicación de su principio, y creo que tampoco lo había sido en los manuscritos del *The Big Species Book* en el cual trabajaba cuando la carta de Wallace lo condujo a cambiar sus planes (cf. Darwin, [1856-1858] 1996). Pero si leemos ese fragmento de la carta Asa Gray a la luz de *On the Origin of Species* (Darwin 1859, pp. 111-126) podremos entender lo que ahí está por lo menos supuesto e insinuado: la relación inmediata que existe entre la selección natural de *variantes* y la multiplicación de *variedades* progresivamente divergentes. Aunque el propio Darwin demoró en percatarse de ello, el *principio de divergencia* es uno de los corolarios fundamentales de la *teoría de la selección natural*; aceptada ésta, él se impone con necesidad casi

apodíctica, y para entender esa relación entre selección natural y divergencia de caracteres puede ser útil retornar a la lucrativa analogía entre selección natural y selección artificial.

Las distintas razas de palomas domésticas derivan, según Darwin (1859, p. 20) argumentó en *Sobre el origen*, de una única especie salvaje, y los criadores habrían producido dichas razas sometiendo distintos linajes de esa especie primitiva a diferentes procesos de selección orientados a satisfacer ciertas exigencias o expectativas más o menos explicitas, y no siempre constantes (Darwin, 1859, p. 112). Aun así, si la diversidad de los usos e intereses que pueden guiar la cría y selección de variedades por parte del hombre ya nos da una explicación satisfactoria de la diversidad de las razas domésticas, no por eso queda inmediatamente claro por qué la selección natural también debería conducir a una divergencia de las formas análogas a la que la selección artificial produjo en las especies domésticas; y de hecho Darwin sólo comenzó a vislumbrar la conexión entre ambos fenómenos después de 1853.

Con todo, y como siempre ocurre con las tesis centrales de Darwin, una vez que entendemos la conexión entre *selección natural* y *divergencia de caracteres*, ella parece tan obvia que tendemos a verla por todas partes: si dentro de cualquier especie, cuyo sustento depende de un cierto recurso particular, surgen individuos hereditariamente dotados para explotar cualquier otro recurso más fácil de obtener, estos últimos serían premiados por la selección natural por el simple hecho de que, durante un tiempo, ellos quedarían menos sometidos a la presión de la *lucha por la existencia* (Darwin 1859, p. 113). La selección natural premiaría después en su descendencia cualquier variación que permita una explotación más eficiente de esos recursos, y eso conducirá a una creciente diferenciación de ese linaje divergente (cf. Howard 1982, p. 26 y ss).

Así, de modo análogo a la selección artificial que produjo la asombrosa variedad morfológica de las palomas domésticas, este mecanismo podría producir variedades en cualquier especie salvaje y, mediando algún mecanismo de aislamiento, esa misma tendencia a "apoderarse del mayor número posible de lugares diferentes en la economía de la naturaleza" (Darwin [1858] 1977, p. 10) también podría generar la variedad morfológica de los pinzones de Galápagos y otras divergencias como aquella que alguna vez separó a los leones de los tigres. Pero, si lo que vale para las palomas domésticas puede valer para los pinzones de Galápagos, lo que vale para éstos puede valer para todas las aves: esa tendencia a la divergencia, derivada de la selección natural, pudo producir todos los géneros de esa familia a partir de un número idéntico de especies originarias, y si eso fue posible es también dable pensar que esas especies resultaron de un proceso análogo, cuyo punto de partida fue una única forma ancestral, producto, a su vez, de otro proceso de divergencia. Y es llevando ese modo de

razonar a sus últimas consecuencias que Darwin justifica la *teoría de la filiación común* que quedó representada en ese elocuente *árbol de la vida* que es la única ilustración de su libro.

La hipótesis que Wallace esbozó en 1858, en cambio, nunca podría habernos llevado tan lejos, o por lo menos no en los términos que ahí fue desarrollada y justificada. Se podría, es cierto, pensar en una segunda formulación de ella tal que permitiese considerarla como una teoría capaz de explicar el árbol de la vida. El razonamiento de Wallace, aparentemente, nos deja muy cerca de pensar en la posibilidad de dos especies originales de un mismo género que explotan los mismos recursos en una determinada región, y que después de un periodo de penuria y escasez, son remplazadas por sendas variedades divergentes que aprovechan recursos menos explotados; y si nos permitimos pensar en más de una variedad divergente para cada especie, tales que cada una de ellas explote nuevos recursos, se podría obtener un esquema de ramificaciones sucesivas, análogo al obtenido por la vía del *principio de divergencia* formulado por Darwin.

Con todo, ese modo de razonar supone algo que no estaba previsto en el esquema presentado por Wallace. El *proceso selectivo* por él concebido se basaba en la lucha por las mismas fuentes de recursos y en la eventual eliminación de las variedades menos dotadas para usufructuarlos. Éstas, de ese modo, dejaban todo el espacio para aquella variedad que estuviese mejor preparada para enfrentar las épocas de penurias. Diferente a lo que ocurre en el caso de Darwin ([1858]1977, p. 10), las variedades de Wallace no parecen poder divergir hacia la ocupación de nuevos lugares en la economía de la naturaleza. En lugar de ello, siempre se estorban mutuamente, y esa pugna sólo concluye cuando, en una época de escasez, la variedad más apta se queda con todo el botín. Sujeto a una *lógica de la sustitución*, Wallace no llega a individualizar la *lógica de la diversificación*; esto se ve claramente en este pasaje de su *paper* en el que él toma distancia de las posiciones de Lamarck:

Tampoco la jirafa adquirió su largo cuello deseando alcanzar el follaje de los arbustos más altos, estirando el cuello para llegar a ellos, sino porque aquellas variedades alternativas que aparecieron con un cuello más largo de lo usual, inmediatamente se aseguraron una nueva faja de pastura sobre el mismo terreno que ocupaban sus compañeras de cuello corto; y, así, en la primera escasez de comida, consiguieron sobrevivirla (Wallace [1858] 1977, p. 17).

Wallace, es cierto, habla aquí, en plural, de *variedades* y no de una *variedad*. El razonamiento, sin embargo, sigue siendo el mismo porque se alude a una, y sólo una, novedad morfológica: un cuello más largo que posibilita alcanzar *una* nueva fuente de alimentos. Además, aun considerando esa nueva fuente de comida, es claro que lo que está en juego es la ocupación

de un mismo territorio o, mejor, la competición por un mismo lugar en la economía de la naturaleza. En la imagen de Wallace, las variedades de cuello largo no se han corrido del nicho ocupado por la especie parental y por eso ésta es desplazada, eliminada, cuando sobreviene un periodo de escasez, donde, pensando darwinianamente, veríamos la oportunidad para una divergencia entre dos variedades especializadas en la explotación de dos fuentes separadas de alimentos, las ramas altas y las ramas bajas, Wallace volvió a ver una ocasión para la eliminación de la forma primitiva. De este modo, sería muy difícil explicar el surgimiento de nuevas ramas del árbol de la vida. En 1858, podríamos decir, Wallace estaba aún en una posición análoga a la que Darwin había alcanzado en 1842: tenía una explicación razonable de la anagénesis, pero no tenía una explicación clara de la cladogénesis.

Jean Gayon (1992, p. 26) tiene razón cuando afirma que "Wallace y Darwin tenían en mente una hipótesis cuya ambición explicativa era doble: por un lado, dar cuenta de la génesis de las adaptaciones y, por otro lado, fundar una representación temporal de la vida como una ramificación errática". Pero creo que, en lo que toca a esas dos cuestiones, los logros conseguidos por Wallace hasta 1858 eran muy inferiores a los conseguidos por Darwin: vimos en el cierre de la sección anterior que su *selección de variedades* no podría ser un orfebre tan minucioso de las estructuras adaptativas como lo era la selección darwiniana, y en ésta vimos que su esquema de razonamiento no podía llegar a explicar la formación del árbol de la vida con la misma claridad e inmediatez con la que sí podía hacerlo el principio darwiniano de divergencia. Creo que ambas limitaciones de la hipótesis de Wallace tienen una raíz común que reside en el hecho de que su análisis no haya problematizado el origen de las variedades.

Darwin, es cierto, no ofrecía una explicación del origen de las variaciones. Aun así, considero que no cabe hacer una analogía entre esta carencia de su formulación y la carencia de una explicación del origen de las variedades que encontramos en Wallace. El efecto que una y otra falta tiene en la estructura general de ambos argumentos no es el mismo. Se dirá, y no sin razón, que si para que exista selección darwiniana de variantes sólo se necesita que haya variaciones hereditarias, aunque éstas no puedan ser explicadas, entonces, para que exista selección wallaciana de variedades sólo es preciso que éstas aparezcan, aun cuando no se sepa cómo. Lo cierto, sin embargo, es que, al no discutir el origen de esas variedades, Wallace no se formuló las preguntas, que además de permitirle llegar a algo próximo del *principio de utilidad*, también le hubiesen permitido entender el *principio de divergencia*.

En la perspectiva de Darwin, las variedades surgen, en primer lugar, porque la selección natural premia cualquier variante morfológica o comportamental que, en ciertas condiciones locales que no alcanzan a toda la especie, represente alguna ventaja, y nunca una posible desventaja —como podía ocurrir en Wallace— para los miembros de un grupo restringido. Tal es el caso de una variedad de caballo salvaje que obedece a las exigencias de una región particular. Además de eso, una variante puede surgir por el premio que la selección natural daría a cualquier apertura al aprovechamiento de nuevos recursos menos explotados por la especie o población en cuestión, y lo cierto es que tanto una posibilidad cuanto la otra resultan en situaciones coherentes con los *principios de utilidad y de divergencia*. Para Darwin, en efecto, las variedades siempre son el resultado de procesos de divergencias morfológicas y etológicas promovidas por los beneficios, o la utilidad, que conllevan para sus portadores. Para él, en suma, adaptación y radiación se implican mutuamente. Wallace, en cambio, al dar la formación de variedades como un dato primitivo de su argumento, no pudo ver la íntima conexión que existía entre ambas cosas.

Se ha discutido mucho sobre cuál fue el verdadero papel que la analogía entre selección artificial y selección natural desempeñó en el descubrimiento de Darwin (cf. Limoges 1976, p. 71; Gayon 1992, p. 38; Largent, 2009 p. 24), y no es mi objetivo, ni mi pretensión, zanjar aquí esa difícil cuestión. Creo, sin embargo, que las consideraciones anteriores podrían llevarnos a pensar que las limitaciones explicativas de las tesis Wallace se debían, en gran parte, al hecho de no haber percibido las posibilidades que ofrecía esa analogía (cf. Gayon 1992, p. 34). Si lo hubiese hecho, tal vez hubiese podido encontrar una clave para analizar la propia formación de las variedades, asunto en donde esa analogía se aplica de un modo más inmediato, y esa explicación, quizá, le podría haber permitido salir de esa lógica de la sustitución en la que su análisis se encontraba preso. Por eso, en lo que respecta a Darwin, y más allá de la cuestión relativa a si la idea de selección natural fue o no entrevista antes de que esa analogía fuese trazada, creo que se puede estar seguro que esta última no sólo jugó un papel importante en el delineamiento final del concepto de selección natural, sino que también facilitó que de él se sacase una consecuencia tan importante como lo era el principio de divergencia.

EL EFECTO KAFKA

Ahora bien, si la *teoría de la selección natural* no estaba realmente en el *paper* de Wallace, queda entonces por explicar la reacción de Darwin en 1858 y también el eco que ella tuvo en la mayor parte de los historiadores que se ocuparon de los sucesos que desembocaron en aquella sesión de la *Linnean Society*, en la que Hooker y Lyell presentaron la *comunicación conjunta* de Darwin y Wallace. Al fin y al cabo, fue el propio Darwin ([1858] 1996b, p. 188) quien dijo: "Nunca vi una coincidencia más impactante. Si Wallace hubiese leído mi bosquejo de 1842 no hubiese podido hacer un resumen

mejor", lo que parece desautorizar todo el análisis que aquí hemos desarrollado. Creo, sin embargo, que la cuestión tiene que dirimirse examinando el texto de Wallace y no atendiendo a esa reacción de Darwin. Ésta puede explicarse de otro modo, y es claro que lo primero que puede decirse a ese respecto es que la teoría esbozada por Wallace era, en efecto, muy próxima de aquella en la cual Darwin estaba trabajando. Los objetivos explanatorios de una y otra son, como apuntó Gayon, muy próximos, y aunque esté lejos de ser idéntico, el recurso que ambas hacen al concepto de *lucha por la existencia* las aproxima más todavía.

Por otro lado, creo que hay algo que conspiraba contra la posibilidad de que Darwin percibiese las importantes diferencias que subsistían a pesar de la semejanza general, y me parece que es ese mismo factor el que explica que todavía nos cueste dejar de leer el texto de Wallace como si no fuese otra cosa que un esquema de la misma teoría en la que Darwin trabajaba. Se trata de ese poderoso condicionamiento de la lectura que Jorge Luis Borges ([1952]1979, pp. 226-228) analizó en "Kafka y sus precursores" y que aquí podríamos llamar de *efecto Kafka*. Él sería, por otra parte, el responsable de que nos sea tan *fácil* encontrar precursores de cualquier autor influyente; incluido ahí, claro, el propio Darwin.

En ese ensayo, Borges ([1952]1979, p. 226) confiesa que, después de haber considerado inicialmente que la obra de Kafka era "tan singular como el fénix de las alabanzas retóricas", a poco de frecuentarla acabó creyendo "reconocer su voz, o sus hábitos, en textos de diversas literaturas y de diversas épocas". Tal el fue el caso, por ejemplo, de las paradojas de Zenón de Eléa. Teniendo en mente *El castillo*, dice Borges, se puede pensar que Aquiles, no pudiendo alcanzar a la tortuga, configura el primer personaje kafkiano de la literatura, y esa lista de *anticipaciones* de Kafka es completada con referencias a textos de Kierkegaard, de León Bloy, de Robert Browning, y hasta de un escritor chino del siglo IX, que son justificadas señalando temas *kafkianos* que ya estarían insinuados en ellos. Así pues, tomando distancia de su propio listado, Borges ([1952] 1979, p. 228) nos dice:

Si no me equivoco, las heterogéneas piezas que he enumerado se parecen a Kafka; si no me equivoco, no todas se parecen entre sí. Este último hecho es el más significativo. En cada uno de los textos está la idiosincrasia de Kafka, en grado mayor o menor, pero si Kafka no hubiera escrito, no la percibiríamos; vale decir no existiría. El poema *Fears and Scruples* de Robert Browning profetiza la obra de Kafka, pero nuestra lectura de Kafka afina y desvía sensiblemente nuestra lectura del poema. Browning no lo leía como nosotros lo leemos.

Algo de lo que reconocemos como el modo darwiniano de razonar está presente, sin duda, en "On the tendency of varieties to depart indefinitely from the original type". Sin embargo, me atrevo también a decir que, sin

contar la obra de Darwin como referencia, sería imposible entrever en esas páginas a la selección natural, entendida como un mecanismo que trabaja sobre variaciones individuales y que, a partir de ellas, es capaz de producir variedades. Nuestra lectura de Darwin, podemos parafrasear aquí a Borges, afina y desvía sensiblemente nuestra lectura del escrito de Wallace, y creo que Darwin fue la primera víctima de ese desvío. Cuando él leyó una referencia a las variedades que se apartaban, que divergían, del tipo original, y vio que eso estaba asociado a la lucha por la existencia, ya no pudo evitar leerse a sí mismo en las palabras de Wallace, y eso le hizo pasar por alto varios indicios de que Wallace no había llegado realmente hasta donde él lo había hecho. Como tantos otros después de él, esos indicios le deben haber parecido meras diferencias terminológicas, modos de expresión no del todo bien escogidos, descuidos propios de un borrador escrito en la selva.

Me parece que Wallace, en cambio, nunca se dejó encandilar por ese efecto de lectura; él, sin duda, sabía lo que *había querido decir*. Él sabía hasta dónde había llegado en sus razonamientos. Por eso comprendió rápidamente que, además de tener sus ideas mejor articuladas y además de haber acumulado mayores evidencias a favor de sus tesis, Darwin estaba también mejor orientado que él en sus reflexiones y había conseguido identificar y analizar con mayor precisión el mecanismo responsable del cambio evolutivo. Tal es así que en sus escritos posteriores a la publicación de *Sobre el origen de las especies* casi no se encuentran rastros de su modo de razonar y de expresarse de 1858, y por eso tampoco se encuentra en ellos ninguna reivindicación, directa o indirecta, explícita o implícita, de méritos compartidos con Darwin en el descubrimiento de la *teoría de la selección natural*. Muy por el contrario, Wallace no dudó en considerarse a sí mismo como un *darwinista* estricto (cf. Wallace, 1889, p. *viii*); y creo que incluso se lo puede considerar como el primer darwinista ¹.

NOTA

1 Esa conversión, de todos modos, no tenía nada de irracional o de imprevisible; "Sobre la ley que ha regulado la introducción de nuevas especies" y "Sobre la tendencia de las variedades a apartarse indefinidamente del tipo original" son prueba suficiente de que 1859 nadie estaba mejor preparado que Wallace para comprender el valor y el alcance de las tesis que Darwin planteó en Sobre el origen de las especies (Bowler 2008, p. vii); y esto es algo que, según me parece, no podría decirse de un personaje como Patrick Matthew (cf. Darwin [1872]1998, p. 9). Aunque en "La acomodación de la vida organizada a la circunstancias, por ramificaciones diversas", de 1831, el mecanismo de la selección natural esté retratado de un modo más inequívoco que en el paper de Wallace (cf. Matthew, [1831] 1976, p. 163), la lectura de ese escrito no nos autoriza a pensar que su autor haya llegado comprender cómo, y por intermedio de cuáles estrategias argumentativas, esa conjetura podía llegar a tener un impacto efectivo en el desarrollo de la historia natural (cf. Limoges, 1976, p. 115; Harris,1985, p. 190). Por eso ella quedó expuesta, y olvidada, en el apéndice de un libro titulado Sobre madera naval y arboricultura. Sus reclamos de prioridad, por eso, sólo pueden ser considerados como puro oportunismo o como el lamento tardío de quien perdió algo muy valioso por no haber sabido apreciarlo, o defenderlo, en su debido momento (cf. Limoges, 1976, p. 113; Harris, 1985, p. 191). Quien no aprecia el valor de una idea es porque simplemente no la entiende, que es casi como decir que no la ha tenido.

- Bizzo, N. (2002), Darwin: Do telhado das Américas à teoria da evolução. São Paulo: Odysseus.
- Borges, J. [1952](1979), Otras inquisiciones, en Borges, J. Prosa Completa, Vol. II. Barcelona: Bruguera, pags. 129-306.
- Bowler, P. (1989), Evolution. Berkeley: University of California Press.
- Bowler, P. (2008), "Foreword" to Smith, C. & Beccaloni, G. (eds.) Natural Selection and Beyond: the Intellectual Legacy of Alfred Russel Wallace. Oxford: Oxford University Press, pags.vii-viii.
- Canguilhem, G. (1983), Études d'histoire et de philosophie des sciences. Paris: Vrin.
- Darwin, C. [1842] (1996), "Sketch on selection under domestication, natural selection, and organic beings in the wild state", in Glick, T. & Kohn, D. (eds.), *Darwin: On Evolution*. Indianapolis: Hackett, pags.89-99.
- Darwin, C. [1844] (1996), "Essay on variation of organic beings in the wild state", in Glick, T. & Kohn, D. (eds.) *Darwin: On Evolution*. Indianapolis: Hackett, pags.99-115.
- Darwin, C. [1845] (1902), Mi viaje alrededor del mundo, Vol. I. Valencia: Prometeo. Darwin, C. [1856-1858] (1996), "On the principle of divergence", in Glick, T. & Kohn, D. (eds.) Darwin: On Evolution. Indianapolis: Hackett, pags. 130-151.
- Darwin, C. [1857] (1996), "Letter to A. R.Wallace", Dec. 22/1857, in Burkhardt, F. (ed.) Charles Darwin's Letters: a Selection 1825-1859. Cambridge: Cambridge University Press, pags. 183-185.
- Darwin, C. [1858] (1996a), "Letter to C. Lyell", Jun. 18/1858, in Burkhardt, F. (ed.) *Charles Darwin's Letters: a Selection 1825-1859*. Cambridge: Cambridge University Press, pag. 188.
- Darwin, C. [1858] (1996b), "Letter to C. Lyell", Jun. 25/1858, in Burkhardt, F. (ed.) Charles Darwin's Letters: a Selection 1825-1859. Cambridge: Cambridge University Press, pagS. 189-190.
- Darwin, C. [1858] (1977a), "Extract from an unpublished work on species by C. Darwin, Esq., consisting of a portion of a chapter entitled On the variation of organic beings in a state of nature; on the natural means of selection; on the comparison of domestic races and true species" [primera parte de la contribución de C. Darwin a Darwin, C. & Wallace, A. [1858] (1977), in Barrett, P. (ed.) The Collected Papers of Charles Darwin, Vol.II. Chicago: The University of Chicago Press, pags. 4-8.
- Darwin, Č. [1858] (1977b), "Abstract of a letter from C. Darwin, Esq., to Prof. Asa Gray, Boston, U.S., dated Down, September 5th, 1857" [segunda parte de la contribución de C. Darwin a Darwin, C. & Wallace, A. [1858] (1977)], in Barrett, P. (ed.) *The Collected Papers of Charles Darwin*, Vol.II. Chicago: The University of Chicago Press, pags. 8-10.
- Darwin, C. (1859), On the Origin of Species. London: Murray.
- Darwin, C. [1872] (1998), On the Origin of Species, 6º ed. New York: Modern Library.
- Darwin, C. (1892), Charles Darwin, His Life Told in an Autobiographical Chapter and in a Selected Series of his Published Letters (edited by Francis Darwin). New York: Appleton.
- Darwin, C. & Wallace, A. [1858] (1977), "On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection", in Barrett, P. (ed.) *The Collected Papers of Charles Darwin*, Vol.II. Chicago: The University of Chicago Press, pags. 3-18.

Flourens, P. (1864), Examen du livre de Darwin sur l'origine des espèces. Paris: Garnier.

Gayon, J. (1992), Darwin et l'après-Darwin. Paris: Kimé.

Ghiselin, M. (2006), "Introduction" to Darwin, C., On the Origin of Species. Dover:

Gilson, E. (1976), De Aristóteles a Darwin (y vuelta). Pamplona: EUNSA.

Glick, T. & Kohn, D. (1996), Darwin: On Evolution. Indianapolis: Hackett.

Harris, L (1985), Evolución: génesis y revelaciones. Madrid: Blume.

Hernández, J. [1879](1971), La vuelta de Martín Fierro, en Hernández, J., Martín Fierro. Madrid: Aguilar, pags. 169-326.

Howard, J. (1982) Darwin. New York: Hill & Wang, 1982.

Huxley, J. & Kettlewel, H. (1985), Darwin. Barcelona: Salvat.

Kohn, D. (2009), "The principle of divergence", in Ruse, M. & Richards, R. (eds.) The Cambridge Companion to the "Origin of Species". Cambridge: Cambridge University Press, pags. 87-108.

Largent, M. (2009), "Darwin's analogy between artificial and natural selection in the origin", in Ruse, M. & Richards, R. (eds.) *The Cambridge Companion to the "Origin of Species"*. Cambridge: Cambridge University Press, pags.14-29.

Lewens, T. (2007), Darwin. London: Routledge.

Limoges, C. (1976), La selección natural. México: Siglo XXI.

Lyell, C. (1832), Principles of Geology. London: Murray.

Matthew, P. [1831] (1976), "Accommodation of organized life to circumstance, by diverging ramifications" (from *On Naval Timber and Arboriculture*), publicado en inglés como apéndice de Limoges, C. (1976), pags. 161-164.

Peckham, M. (1859), "Introduction" to Charles Darwin: The Origin of Species (a variorum text). Philadelphia: PENN.

Roulin, F. (1835), "Recherches sur quelques changemens observés dans les animaux domestiques transportés de l'ancien dans le nouveau continent". Mémoires présentes par divers savans a l'Académie Royale des sciences de l'Institut de France (sciences mathématiques et physiques) VI: 321-352.

Wallace, A. R. [1855] (1871), "On the law which has regulated the introduction of new species", in Wallace, A. R., Contributions to the Theory of Natural Selection. London: MacMillan, pags. 1-25.

Wallace, A. R. [1858] (1977), "On the tendency of varieties to depart indefinitely from the original type" [contribución de A.R. Wallace a Darwin, C. & Wallace, A. [1858] (1977)], in Barrett, P. (ed.) The Collected Papers of Charles Darwin, Vol.II. Chicago: The University of Chicago Press, pags. 10-18.

Wallace, A. R. (1871), "Mimicry, and other protective resemblances among animals", in Wallace, A.R.: Contributions to the Theory of Natural Selection. London: MacMillan, pags. 45-129.

Wallace, A. R. (1889), Darwinism. London: Macmillan.